
Steering Symbolic Execution to Less Traveled Paths

You Li∗ Zhendong Su+ Linzhang Wang∗ Xuandong Li∗
∗State Key Laboratory for Novel Software Technology

Department of Computer Science and Technology
Nanjing University, Nanjing, 210023, China

+University of California, Davis, USA
leo86@seg.nju.edu.cn su@cs.ucdavis.edu lzwang@nju.edu.cn lxd@nju.edu.cn

Abstract
Symbolic execution is a promising testing and analysis
methodology. It systematically explores a program’s execu-
tion space and can generate test cases with high coverage.
One significant practical challenge for symbolic execution
is how to effectively explore the enormous number of pro-
gram paths in real-world programs. Various heuristics have
been proposed for guiding symbolic execution, but they are
generally inefficient and ad-hoc. In this paper, we introduce a
novel, unified strategy to guide symbolic execution to less ex-
plored parts of a program. Our key idea is to exploit a specific
type of path spectra, namely the length-n subpath program
spectra, to systematically approximate full path information
for guiding path exploration. In particular, we use frequency
distributions of explored length-n subpaths to prioritize “less
traveled” parts of the program to improve test coverage and
error detection. We have implemented our general strategy in
KLEE, a state-of-the-art symbolic execution engine. Evalu-
ation results on the GNU Coreutils programs show that (1)
varying the length n captures program-specific information
and exhibits different degrees of effectiveness, and (2) our
general approach outperforms traditional strategies in both
coverage and error detection.

Categories and Subject Descriptors D.2.4 [Software Engi-
neering]: Software/Program Verification—Reliability, Vali-
dation; D.2.5 [Software Engineering]: Testing and Debu-
gging—Symbolic execution

General Terms Algorithms, Experimentation, Verification

Keywords less traveled, path spectra, symbolic execution

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
OOPSLA ’13, October 29–31, 2013, Indianapolis, Indiana, USA.
Copyright c© 2013 ACM 978-1-4503-2374-1/13/10. . . $15.00.
http://dx.doi.org/10.1145/2509136.2509553

1. Introduction
Testing is one of the most important software validation
techniques, and arguably the most practical and widely-
used. However, traditional approaches, such as random test-
ing [14, 19] and manual testing, although useful, can be inef-
fective [15, 25, 31]. Symbolic execution [10, 22] is another
classical technique for software testing and analysis. It can
be used for systematically testing a program and test input
generation with high coverage. Instead of using concrete in-
put, symbolic execution uses symbolic values as input and
explores a program’s execution space. When symbolic exe-
cution encounters a branch condition, it forks the execution
state, following both branch directions and updating the cor-
responding path constraints on the symbolic input. When it
reaches a program exit or hits an error, the current path con-
straint will be solved to find a concrete test case that drives
program execution to this program location. However, in prac-
tice, a program may have a large or even infinite number of
paths because of conditionals, loops, and recursions. Thus,
one key issue for making symbolic execution practical is
how to guide it toward more “profitable” paths. To this end,
various strategies have been proposed to guide and optimize
symbolic exploration [5, 7, 17, 24, 32]. However, these path
guidance techniques for symbolic execution are generally
ineffective and ad-hoc.

In this paper, we introduce a novel, unified methodology
to guide symbolic execution to explore programs “more ef-
fectively.” At the high-level, we aim to explore “less traveled
paths” of a program as it can help improve test coverage and
locate more defects. Although most commonly adopted in
practice, it is folklore that statement and branch coverage
metrics may not accurately reflect how thorough a program
has been exercised by a set of test cases. The recent work on
Csmith [33] gives more concrete evidence. Csmith is a ran-
dom C program generation tool specifically developed to find
bugs in C compilers. The randomly generated C programs
yield roughly the same statement and branch coverage as the
test suites in the tested compilers (e.g., GCC and Clang/L-
LVM), but they triggered a few hundred new bugs in GCC



and Clang/LLVM alone. Thus to measure “less traveled”, a
more flexible and general notion is needed.

Our key conceptual idea is to adapt a variant of path
coverage, the length-n subpath coverage (where each subpath
has n branches). Program profiling [4, 13, 27] has been
effectively used to understand the behavior of a program.
It can also be applied to measure test coverage using different
program spectra. We propose the use of length-n subpath
spectra to uniformly measure coverage and guide symbolic
path exploration. Indeed, we use statistical analysis of already
covered length-n subpaths to systematically steer symbolic
execution to not yet or less explored parts of the program. The
use of length-n subpaths offers a natural spectrum of program
coverage. One extreme is the nontrivial degenerative case of
branch coverage, when n = 1. The other extreme maps to
complete path coverage, when n =∞ (i.e. unbounded). We
propose to use length-n subpath spectra to help prioritize
program paths for exploration. Different choices of n give a
systematic coverage, and we show that they exhibit different,
yet complementary benefits.

In more detail, we maintain a priority queue P to store
subpath spectra information on the explored parts of the
program. For an explored (sub)-path π = 〈s0, s1, . . . , sk〉,
each si(0 ≤ i ≤ k) corresponds to a branch location and
the direction taken in the execution. We compute π’s length-
n subpath fragments (i.e., “n-grams”) and store each in P
along with its frequency information. When we need to decide
which pending paths to explore, we examine P and select a
pending path π′ with the lowest frequency length-n subpath
at its frontier. We terminate the path reaching the exit point or
hitting an error. This process repeats until either the program
has been fully explored, or we have reached a preset time
limit or coverage threshold.

We have implemented our general strategy in KLEE [7],
a state-of-the-art symbolic execution tool. To evaluate the
effectiveness of our strategy, we ran KLEE on the GNU
Coreutils programs [11] by varying the guidance strategies,
including our own and the most common traditional strategies
built into KLEE. We compared the quality of the generated
test cases by measuring their statement coverage and defect
detection capabilities. The results show that our strategy can
guide symbolic execution to cover the program faster and
find more bugs than the evaluated traditional strategies. In
summary, we have the following key findings: 1) different
choices of n exhibit different behavior and capture program-
specific information; and 2) the proposed unified strategy
significantly outperforms the other strategies.

In this paper, we make the following main contributions:

• We introduce the novel concept of using subpath program
spectra as a unified strategy to guide symbolic execution
and present the details on how to realize the strategy.

• We implement the general strategy within KLEE and
extensively evaluate its effectiveness against common
traditional strategies.

main (x, y) {
s0: if (x > y)
s1: x = f(x);

else
s2: ;
s3: g (x, y);
s4: return;

}

int f (a) {
s5: if (a > 0)
s6: ABORT;

else
s7: return -a;

}

g (a, b) {
s8: if (a == 0)
s9: if (b == 0)
s10: ABORT;

else
s11: ;

else
s12: print a/b;
s13: return;

}
(a) Example Program

Entry

s
0

s
5

s
8

s
9

s
4

s
6

s
10

(b) Control Flow

Figure 1. An example program.

The rest of the paper is structured as follows. Section 2
provides details on how to use length-n subpath program
spectra to guide symbolic execution. We also give necessary
background on symbolic execution and use an example to
illustrate the benefits of our approach. In Section 3, we de-
scribe the implementation and evaluation of our approach. We
survey related work in Section 4 and conclude in Section 5.

2. Subpath-Guided Path Exploration
This section details our proposed path exploration strategy.
We start with some necessary background on symbolic exe-
cution and path spectra.

2.1 Symbolic Execution Background
The concept of symbolic execution [22] was proposed by
King in 1976. It is a practical testing and analysis approach
that utilizes and combines testing and program verifica-
tion. Recent years have witnessed an impressive amount of
work [1, 5, 7, 8, 17, 18, 24, 26, 32] on building practical
symbolic execution techniques and tools for improving test
input generation and bug finding. The key idea of symbolic
execution is to substitute the actual data with symbolic value
as the input data. The corresponding program operations are
replaced with symbolic expressions, so the output of the pro-
gram can be represented as formulas on the symbolic input.

To illustrate the procedure of symbolic execution, we use
the example program in Figure 1. At the entry point of the
program, symbolic execution generates an original execution



state ES . An execution state maintains 1) the symbolic values
(x and y), 2) the corresponding symbolic expressions (such
as x = f(x) in s1), and 3) symbolic path constraint PC
of the input (such as x > y in s0), which can represent a
specific path of the program. The symbolic execution engine
then executes the program with ES . When it encounters a
conditional statement “if (e) s1 else s2” (such as s0 in the
program), it generates a new execution state ES ’. The new
state ES ’ copies all the information from ES , and the path
constraints are updated accordingly: the path constraint of
ES ’ is updated to PC ∧ ¬(e), while the path constraint of
ES is updated to PC ∧ (e). Therefore, ES and ES ’ can
explore both sides of the conditional statement. As more and
more execution states are generated, different strategies are
applied to decide which execution state is desirable to be
executed next at each fork (i.e., a conditional branch either
from conditionals or loops in the source program).

During this process, a constraint solver is used to check
the satisfiability of the path constraint in an execution state.
If it is unsatisfiable, the corresponding path is discarded from
further exploration as it is infeasible. When an execution state
reaches an exit point of the program or hits an error, the path
exploration terminates and the corresponding path constraint
is solved to find a concrete input, if any. Assuming the latest
execution state is always selected, under the Depth-First
Search (DFS) strategy, the path s0s2s3s12s13s4 is the first
case generated and the path constraint is ¬(x > y)∧¬(x ==
0), then the constraint solver can generate a concrete input
(1, 0) (i.e., x = 1 and y = 0). This input is typically
equivalent to many other test cases following the same paths.
When we execute the program with this concrete input, it can
repeat the same path as the execution state did originally via
symbolic execution.

However, in realistic programs, loops or recursion can lead
to a large or even infinite number of paths (in theory). In most
situations, one has to set a time limit on symbolic execution.
Thus, it is important to guide symbolic execution to select
profitable states to explore during its search. Consider KLEE,
a state-of-the-art symbolic execution engine. It has several
built-in traditional search strategies [7]:

• Depth-First Search (DFS) always selects the latest ex-
ecution state among all the states to explore next. This
strategy has little overhead in selecting a state, however,
it typically explores fewer parts of the program and gets
stuck when it encounters a tight loop — a loop with few
statements that iterates many times.

• Random State Search (RSS) randomly selects a pending
state to explore. This strategy can explore the program
more uniformly and avoid the situation with tight loops
with a symbolic condition creating new states rapidly (fork
bombing). The problem of RSS is that it may repeatedly
generate test cases that have the same effect as those
generated earlier.

• Random Path Selection (RPS) uses a binary execution
tree to record the information on explored parts of the
program, where the leaves are current states and the
internal nodes are the forks. It selects states by traversing
the execution tree from the root and randomly picks a
direction when it encounters a branch until it reaches a leaf.
With this strategy, those states high up in the execution
tree have greater chance to be chosen because these states
have fewer constraints to satisfy and may be more likely
to explore uncovered parts of the program. RPS can avoid
the fork bombing problem affecting RSS, but as RSS, it
may also repeatedly generate similar test cases.

• Coverage-Optimized Search (COS) uses heuristics to
compute which state has better chance to cover new code
very soon. It calculates a weight for the states to be chosen
and selects a state w.r.t. the weight. Various factors, such
as the minimum distance to an uncovered instruction and
the query cost, are taken into account to calculate the
weight for each state. This strategy is not general and may
not perform well for every program.

Using search heuristics, such as the ones above, is one
possible approach to deal with the problem of path explosion
in symbolic execution. Traditional methods mostly perform
blind, random search, thus cannot explore the program uni-
formly and thoroughly.

2.2 The Length-n Subpath Program Spectra
To effectively guide symbolic execution, we believe that the
“less traveled” parts of the program are more profitable. Ex-
ploring these parts can generate test cases with higher cov-
erage and better defection detection capabilities. To capture
which executions may lead to “less traveled” parts, we need
to have means to approximate the behavior of the program. To
this end, this paper proposes a novel application of program
spectra to help approximate program behavior and guide path
exploration.

Program profiling has been used to understand dynamic
program behavior. It counts occurrences of different runtime
events during a program’s execution [4]. These events can
be paths, basic blocks, control-flow edges, etc. Profiling
based on different types of events provides various program
spectra that can help characterize the program’s execution
and provide signatures of a program’s runtime behavior [27].
Below we list a few of the most widely used program spectra:

• Branch Hit Spectra: Recording the executed conditional
branches.

• Branch Count Spectra: Recording the execution count for
each conditional branch.

• Complete Path Spectra: Recording the complete paths that
were explored.

• Path Spectra: Recording the explored intraprocedural
loop-free paths.



• Path Count Spectra: Recording the executed count for
each intraprocedural loop-free path.

The above profile information can be used in many ways,
such as compiler optimizations [2, 3], regression testing [20],
coverage measuring, and many other applications that need
to analyze program behavior. Reps et al. [27] use path spec-
tra to deal with the “Year 2K Problem.” They compared
spectra from different runs of the same program to locate
date-dependent computations. An empirical study [20] shows
various types of spectra differences highly correlate with the
exposure of regression faults. However, there does not exist
a single program spectrum that can discover all program be-
havior differences. Thus, using different program spectra can
help us understand a program’s behavior more comprehen-
sively from different aspects.

From the above discussion, different program spectra pro-
vide different perspectives to understand a program’s exe-
cution behavior. We can use program spectra to measure
the effect of different test generation techniques. Complete
path coverage is a highly precise metric to measure the qual-
ity of a test suite, however, it is impractical to obtain high
coverage as we need a large number of test cases to cover
possible complete paths, many times even infinite. On the
other hand, branch coverage, statement coverage or function
coverage are too shallow to accurately capture the effective-
ness of test suites. The random C program generation tool
Csmith [33] has been used to discover hundreds of new bugs
in mainstream C compilers, such as GCC and Clang/LLVM.
However, as the authors have noted, the generated test cases
and the compilers’ test suites are very similar with respect to
the three coverage metrics mentioned above.

To fill the gap between complete path coverage and
branch coverage, we adopt the concept of length-n subpath
program spectra. It is a variant of complete path coverage.
A complete path is a unique sequence of branch conditions
from the entry of a program to its exit, and we can represent
it as π = 〈s0, s1, . . . , sk〉 where each si corresponds to
a conditional branch (i.e., fork) and the branch direction
taken in the program. We represent a length-n subpath as
〈si+1, si+2, . . . , si+n〉, which is a consecutive sub-sequence
from a complete path.

By varying n, we obtain a spectrum of modeling precision.
When n = 1, it degenerates to branch coverage. At the other
extreme, we obtain complete path coverage when n = ∞
(i.e., unbounded).

2.3 Subpath-Guided Search
To measure which parts are “less traveled”, we propose to use
length-n subpath. However, it is time-consuming to build the
whole length-n subpath matrix during symbolic execution.
Instead, we use statistical analysis of the already covered
length-n subpaths to decide which execution state(s) may
lead the path exploration to the “less traveled” parts. We call
this general, uniform strategy Subpath-Guided Search (SGS).

Algorithm 1: Subpath-Guided Search Strategy (Part 1)
Initialization:

1: PriorityQueue<pathSegmentCount> P;
2: Vector<executionState> ESVector;
3: executionState initialState;
4: Integer pathSegmentLength;

Begin symbolicExecution:
5: ESVector.add(initialState);
6: while ESVector.size>0 ‖ !TIME OUT do
7: executionState ES = selectState();
8: P[ES.π]++;
9: while ES.instructionType != FORK ‖ EXIT &&

!FoundError do
10: ES.executeInstruction();
11: end while
12: if ES.instructionType = EXIT ‖ FoundError then
13: generateTestCase();
14: ESVector.remove(ES);
15: continue;
16: end if
17: if ES.instructionType = FORK then
18: instruction Fr = ES.currentInstruction;
19: ES2 = new executionState(ES);
20: ES.newNode = Fr(T)
21: updatePathSegment(ES);
22: if !P.contains(ES.π) then
23: P.add(ES.π,0);
24: end if
25: ES2.newNode = Fr(F);
26: updatePathSegment(ES2);
27: if !P.contains(ES2.π) then
28: P.add(ES2.π,0);
29: end if
30: ESVector.add(ES2);
31: end if
32: end while
End symbolicExecution

The main algorithm is shown in Algorithm 1 & Algo-
rithm 2. We use a structure e = 〈π, f〉 for statistical analysis,
where π is the subpath (of length n), f is the frequency of
π in the explored parts of the program, which is calculated
by counting the number of times that π has been explored
before. A priority queue P is maintained and the subpath
with the lowest frequency is at the top of the queue. For each
execution state ES , a corresponding subpath π is maintained,
which is composed of the latest n branch conditions executed
of ES . The execution state with the lowest count of π is
selected to continue the symbolic execution (Algorithm 1,
Line 7). We break ties, if any, at random. When an execution
state ESk (ES in Algorithm 1) is picked, the frequency of the
corresponding subpath πk (ES.π in Algorithm 1, Line 8) is in-
creased by 1. As described in Section 2.1, at every fork point



Steps Pending Path Priority Queue Path to Pick Generate Case
1 1:s0t (*s0t,0),(*s0f ,0) 2

2:s0f
2 1:s0t (*s0t,0),(*s8t,0),(*s8f ,0),(s0f ,1) 3 s0fs8fs4

2:s0fs8t
3:s0fs8f

3 1:s0t (*s0t,0),(*s8t,0),(s8f ,1),(s0f ,1) 2
2:s0fs8t

4 1:s0t (*s0t,0),(*s9t,0),(*s9f ,0),(s8t,1), 3 s0fs8ts9fs4
2:s0fs8ts9t (s8f ,1),(s0f ,1)
3:s0fs8ts9f

5 1:s0t (*s0t,0),(*s9t,0),(s9f ,1),(s8t,1), 2 s0fs8ts9ts10
2:s0fs8ts9t (s8f ,1),(s0f ,1)

6 1:s0t (*s0t,0),(s9t,1),(s9f ,1),(s8t,1), 1
(s8f ,1),(s0f ,1)

7 1:s0ts5t (*s5t,0),(*s5f ,0),(s0t,1),(s9t,1), 2
2:s0ts5f (s9f ,1),(s8t,1),(s8f ,1),(s0f ,1)

8 1:s0ts5t (*s5t,0),(s5t,1),(s0t,1),(s9t,1), 3 s0ts5ts6
2:s0ts5fs8t (s9f ,1),(*s8t,1),(*s8f ,1),(s0f ,1)
3:s0ts5fs8f

9 1:s0ts5fs8t (s5t,1),(s5t,1),(s0t,1),(s9t,1), 2 s0ts5fs8fs4
2:s0ts5fs8f (s9f ,1),(*s8t,1),(*s8f ,1),(s0f ,1)

. . . . . . . . . . . . . . .

Table 1. Length-1 subpath-guided search.

Algorithm 2: Subpath-Guided Search Strategy (Part 2)
Begin selectState

1: Vector<executionState> selectSet;
2: for 0<i<ESVector.size() do
3: if P(ESVector[i].pathSegment)=P.lowest then
4: selectSet.add(ESVector[i]);
5: end if
6: i++;
7: end for
8: Integer random = randomInteger() mod selectSet.size();

9: return selectSet[random];
End selectState
10:
Begin updatePathSegment(executionState ES)
11: ES.π.add(ES.newNode);
12: if ES.π.length > pathSegmentLength then
13: ES.π.removeFirstBranchCondition();
14: end if
End updatePathSegment(executionState ES)

Fr, a new execution state ES ′k is generated (Algorithm 1,
Line 19). The states ESk and ES ′k (ES2 in Algorithm 1, Line
19) will explore both sides of the fork, so we update the cor-
responding subpaths of ESk and ES ′k to πk + Fr(T ) and
πk + Fr(F ) (Algorithm 1, Lines 20 and 25). Fr(x) denotes
a fork point Fr with the direction it chooses, where x can
be either T or F . If the length of the new subpath is larger
than n, the first branch condition will be removed (Algoritm
2, updatePathSegment). Then we check the priority queue P .
The new subpath with a 0 count will be added to P if it has
not been encountered earlier (Algorithm 1, Lines 23 and 28).
After updating the priority queue, we pick a new execution
state with the lowest count of π (Algoritm 2, selectState).
This process repeats until all the execution states have ter-
minated or the symbolic exploration times out. To illustrate
the benefits of SGS, we use length-1 subpath to guide the
symbolic exploration to generate test cases for the example
program in Figure 1 and compare it with the depth-first search
strategy. To have a fair comparison, we assume that our strat-
egy breaks ties by selecting the latest execution state as DFS
does. There are 7 complete paths in the example program. To
generate test cases to cover all the statements, DFS needs to
explore all 7 paths. The procedure of length-1 subpath guided
search is shown in Table 1. Node sit represents a branch node
si with the true direction taken, while sif denotes a branch
node si taking the false direction. The column “Pending Path”
records the corresponding paths of the unterminated execu-



Steps Pending Path Priority Queue Path to Pick Generate Case
1 1:s0t (*s0t,0),(*s0f ,0) 2

2:s0f
2 1:s0t (*s0t,0),(*s0fs8t,0),(*s0fs8f ,0),(s0f ,1) 3 s0fs8fs4

2:s0fs8t
3:s0fs8f

3 1:s0t (*s0t,0),(*s0fs8t,0),(s0fs8f ,1),(s0f ,1) 2
2:s0fs8t

4 1:s0t (*s0t,0),(*s8ts9t,0),(*s8ts9f ,0),(s0fs8t,1), 3 s0fs8ts9fs4
2:s0fs8ts9t (s0fs8f ,1),(s0f ,1)
3:s0fs8ts9f

5 1:s0t (*s0t,0),(*s8ts9t,0),(s8ts9f ,1),(s0fs8t,1), 2 s0fs8ts9ts10
2:s0fs8ts9t (s0fs8f ,1),(s0f ,1)

6 1:s0t (*s0t,0),(s8ts9t,1),(s8ts9f ,1),(s0fs8t,1), 1
(s0fs8f ,1),(s0f ,1)

7 1:s0ts5t (*s0ts5t,0),(*s0ts5f ,0),(s8ts9t,1),(s8ts9f ,1), 2
2:s0ts5f (s0fs8t,1),(s0fs8f ,1),(s0t,1),(s0f ,1)

8 1:s0ts5t (*s0ts5t,0),(*s5fs8t,0),(*s5fs8f ,0),(s8ts9t,1), 3 s0ts5fs8fs4
2:s0ts5fs8t (s8ts9f ,1),(s0fs8t,1),(s0fs8f ,1),(s0t,1),
3:s0ts5fs8f (s0f ,1)

9 1:s0ts5t (*s0ts5t,0),(*s5fs8t,0),(s5fs8f ,1),(s8ts9t,1), 2
2:s0ts5fs8t (s8ts9f ,1),(s0fs8t,1),(s0fs8f ,1),(s0t,1),

(s0f ,1)
10 1:s0ts5t (*s0ts5t,0),(s5fs8t,1),(s5fs8f ,1),(*s8ts9t,1), 3 s0ts5ts6

2:s0ts5fs8ts9t (*s8ts9f ,1),(s0fs8t,1),(s0fs8f ,1),(s0t,1),
3:s0ts5fs8ts9f (s0f ,1)

. . . . . . . . . . . . . . .

Table 2. Length-2 subpath-guided search.

tion states, the column “Priority Queue” shows the count
and position changes of the length-1 subpath, the structure
e = 〈π, f〉 with a ∗ in the priority queue indicates that there
are unterminated execution states which have the correspond-
ing subpath π. When an execution state reaches the exit of
the program, the corresponding test case will be generated
and shown in the rightmost column, then the execution state
is terminated and removed from the pending path.

In the first 7 steps, subpath-guided search has the same
selection as DFS. Three test cases are generated, which cover
all the sub-paths started from s8. Three unterminated execu-
tion states with the path s0ts5t, s0ts5fs8t and s0ts5fs8f can
be chosen. In step 8, the branch condition s5t becomes the
“least traveled” part compared to s8f and s8t, subpath-guided
search then drives symbolic execution to explore that branch
and the case with the path s0s5s6 is generated as the 4th case,
while DFS will select the third execution state. In step 9, for
all the count of the length-1 subpath is 1, subpath-guided
search selects the latest execution and generates the test case
for s0ts5ts8fs4. It takes only 5 cases to cover all the state-
ments in the example program with the guidance of length-1
SGS.

Different lengths can provide different effects for path
guidance. Table 2 shows the procedure of the length-2 SGS.
Same as the length-1 SGS, the length-2 SGS generates 5 cases
to cover all the statements, and the same selection in the first 7
steps. The length-2 SGS counts the frequencies of the length-
2 sub-paths. In step 8, the execution state corresponding to
the path s0ts5fs8f is selected because the sub-path s5fs8f
has never been explored before. On the other hand, in length-
1 SGS, the sub-path s8f is explored, and the execution state
corresponding to the path s0ts5t is selected. The length-2
SGS considers more contextual information, which guides
symbolic execution to possibly explore moree directions in a
program. We see that the length-2 SGS takes one extra step
than length-1 SGS to generate cases covering all statements
of the example program.

The subpath-guided search can also avoid the fork bomb-
ing problem, if we replace s11 with ”s′11: while (a < 10)
a++;”, the DFS strategy will keep creating new execution
states in s′11 and lead to the starvation of the other states.
Conversely, in our strategy, when both conditions in s′11 are
executed once, it prefers those states with a zero count of
the corresponding subpath to the loop entrance. When all the



zero count subpaths are explored, the loop entrance node will
be explored again.

2.4 Discussions
Subpaths with different lengths provide various program spec-
tra and conceptually capture different levels of “less traveled”
program parts. In our approach, shorter subpaths are more
similar to using a single branch condition, and thus may guide
symbolic execution to cover those uncovered statements with
higher probabilities. However, shorter subpaths contain less
contextual information of the explored parts, thus some ex-
ecution states may share the same corresponding subpaths.
In this case, symbolic exploration may ignore some special
execution states that lead to particular program parts. On the
other hand, longer subpaths may divide the execution states
with smaller granularity, but some redundant test cases may
be generated. In the next section, we empirically explore
such trade-offs and show how to synergistically combine the
benefits of different choices of n.

3. Evaluation and Analysis
This section presents our evaluation and analysis of the pro-
posed strategy. It describes details of our evaluation design,
setup, and results. In particular, we show that, on realistic pro-
grams, our strategy systematically captures program-specific
information and exhibits varying levels of effectiveness with
different choices of n, and it performs significantly better
than traditional strategies in terms of test coverage and error
detection.

3.1 Evaluation Design and Setup
We have implemented the proposed length-n subpath guided
search in KLEE [7, 23], a state-of-the-art symbolic execution
engine built on top of the LLVM compiler infrastructure.
KLEE can process a large number of concurrent states and
has strong support for handling interactions with the external
environment [9]. KLEE also provide different built-in search
strategies, including traditional DFS, random state search,
and some other heuristic search strategies. Adding our unified
search strategy to KLEE, we are able to directly compare their
effectiveness and trade-offs in test case generation not on toy
programs, but realistic programs from GNU Coreutils.

Research Questions. Through empirical analysis, we hope
to answer the following key research questions:

(R1) What impact do different choices of n have? Can they
be effectively combined?

(R2) How does our strategy compare with the traditional
strategies?

In particular, for (R1), we aim to understand what different
characteristics the test suites generated from different n’s
have in terms of coverage and error detection. We will
also understand whether there is a uniformly best n. As
for (R2), we seek to understand how our strategy compares

Program ELOC Mutant Program ELOC Mutant
base64 3989 1204 nohup 3875
basename 4026 356 od 4463 6762
cat 3953 paste 3837 1525
chcon 4343 1313 pathchk 3857 1078
chgrp 4278 672 pr 4626
cksum 3983 1066 printenv 3881
comm 3997 820 printf 4251 2745
csplit 8589 pwd 3969
cut 4195 2821 readlink 4154 284
date 5688 rm 4560
dd 4734 5450 rmdir 3892 454
df 4314 seq 3927
dircolors 4093 1527 setuidgid 3878 548
dirname 3889 209 shuf 4508
du 5790 2168 sleep 4199 381
echo 3884 split 4428 2169
env 3937 334 stat 4210
expand 3916 1144 stty 4718
expr 9565 2333 sum 4068 954
factor 3896 sync 3919 89
false 3897 tail 4495
fmt 3860 tee 3966 593
fold 3891 1064 test 3577
groups 4002 232 touch 4744 1660
head 4170 tr 4150 6640
id 4067 true 3888
join 4617 tsort 3856 1120
kill 3919 tty 3847
link 3829 272 uname 3810
ln 4200 unexpand 3903 1336
logname 3902 102 uniq 4048
ls 6549 unlink 3865 186
mkdir 4213 408 uptime 3896
mkfifo 3959 343 users 3907
mknod 3840 868 wc 4075 2205
mktemp 4101 whoami 3856
nice 4010 764 yes 3901
nl 10037 1591

Table 3. Test subjects from GNU Coreutils.

to traditional strategies also in terms of coverage and error
detection. We have designed and ran a set of experiments to
answer these questions.

Evaluation Subjects. To measure the effectiveness of dif-
ferent length-n subpath guided search strategy. Following
KLEE, we have selected GNU COREUTILS utilities as the
test subjects. They are the basic file, shell and text manipula-
tion utilities on the GNU operating system [11]. The version
of COREUTILS that we use is 6.11 (as from the tutorials from
KLEE’s website). All the experiments were ran on a server
with Intel(R) Xeon(R) X7542 CPU (18 cores, 2.67GHz). The
operating system is Ubuntu 10.04. The programs we use are
shown in Table 3. The column “ELOC” shows the size of
the programs in terms of the number of executable lines of



code (ELOC). ELOC shows the total executable lines of the
final executable we ran KLEE on after optimization. Because
KLEE may invoke library code to execute some parts of
the program we test, we also include the library code when
measuring the raw size of the programs, again following
KLEE [7]. From the table, we can see that the size for most
programs ranges between 3K to 4K, while six programs have
more then 5K lines. This statistical information shows that
the programs are not tiny, toy problems. In addition, we have
applied mutant testing [12] to evaluate the effectiveness of the
strategies. The column “mutant” lists those programs selected
for mutant testing and the corresponding number of mutants
for each selected program.

Traditional Strategies. KLEE provides four main search
heuristics: Depth-First Search (DFS), Random State Search
(RSS), Random Path Selection (RPS), and Non Uniform
Random Search (NURS). NURS randomly selects states
according to a given distribution based on some properties. In
our evaluation, we choose the following properties: whether
it covers new instructions (covnew), the depth (depth), the
Instr-Count heuristic (icnt), and the minimum distance to an
uncovered instruction (md2u). The NURS is interleaved with
Random Path Selection (RPS), while the default heuristics
used by KLEE are random-path interleaved with nurs:covnew.
For subpath-guided search, we choose the length to range
over {1, 2, 4, 8} for comparison.

We ran KLEE on each program with the command:

./run<program> --search-strategy

--max-time 3600

--sym-args 0 3 10

--sym-files 2 8

The option --max-time 3600 sets the time limit to
3, 600 seconds. The option --sym-args 0 3 10 allows
KLEE to replace 0 to 3 command line arguments of the pro-
gram with at most length 10. The option --sym-files 2 8

tells KLEE to make at most 2 standard input symbolic files
with maximal length 8. It is noted that KLEE can generate
test cases for those unterminated execution states after the
time limit. However, for some strategies, there are many
unterminated states, which may consume much of the algo-
rithms’ time and lead to inaccurate time limits. To be fair in
our comparison, we ignore the test cases corresponding to un-
terminated execution states and compare different strategies
with the test cases generated within the given time limit.

3.2 Test Coverage Results
Our first set of evaluations focuses on evaluating the test
coverage (in particular statement coverage) of the generated
test cases under different search strategies. We use the tool
gcov to compute the statement coverage information. It can
be used in conjunction with GCC and generate executables
to profile an instrumented program. KLEE provides a tool to
replay the test cases on the corresponding executable and
gcov can calculate statement coverage. When measuring

coverage, we only consider the code in the program itself and
do not include the library code since it is invoked from many
programs to avoid counting them multiple times. By default,
KLEE generates one test case for each terminated path.
However, for larger programs, it is quite costly to compute
and re-execute the test cases covering explored parts of the
program. Since our goal is to measure statement coverage, we
use the --only-output-states-covering-new option
on the KLEE command line, so that KLEE only outputs
test cases for the paths covering new instructions in the main
utility code (or hit an error).

We have selected 75 programs in COREUTILS for cover-
age comparison. Table 4 shows the result of the comparison.
We show the distribution of the coverage under each search
strategy. In addition, the row “Avg.” shows the average cov-
erage information across all programs. The row “Best” lists
the total number of programs with best coverage (for ties, we
count 1 for each).

Result 1: SGS yields higher coverage. From Table 4, we
observe that subpath-guided search (SGS) performs better
than the other strategies, across all choices of n. The NURS
strategies do not perform well. One possible explanation is
that we ignore the cases corresponding to unterminated states.
The results demonstrate the disadvantages of the random
choices: sometimes they cannot drive the execution states to
reach the exit to effectively generate test cases. The random
path search (RPS) strategy has similar results as length-8
(i.e., n = 8) subpath guided search, which shows that for the
COREUTILS programs, length-8 subpaths seem long enough
to approximate complete paths.

Result 2: No uniform best n for SGS. We observe that al-
though the length-2 subpath-guided search shows the best
results compared to the other strategies (both the highest
average coverage and the most number of highest covered
programs), it is still not the best uniform n for about half
of the programs. Different subpath lengths exhibit different
characteristics, so we need a method to unify the guidance of
different lengths.

As we discussed in Section 2, different length subpaths
profile different spectra of a program. They can provide dif-
ferent understanding of a program’s behavior and guide sym-
bolic execution to different parts of the program. Combining
the results of SGS with different subpath lengths may pro-
vide a more comprehensive exploration of the program. To
find out the power of combining different lengths’ results,
we ran KLEE on the benchmarks with the guidance of each
length subpath for 15 minutes. We replayed the test suites
individually and then combined all the test cases to see their
effects.

Result 3: Combined SGS performs the best. Table 5 pre-
sents the coverage distribution of the individual subpath-
guided search and the combined strategy. We observe that
individual strategies can quickly achieve high statement



Cov. SGS SGS SGS SGS RSS DFS RPS NURS NURS NURS NURS
n = 1 n = 2 n = 4 n = 8 covnew depth icnt md2u

90-100% 18 18 21 13 14 11 17 11 16 11 11
80-90% 4 12 9 10 5 3 9 3 4 5 4
70-80% 14 16 12 13 5 6 12 2 12 3 3
60-70% 17 11 12 15 12 11 12 4 14 5 6
60%- 22 18 21 24 39 44 25 55 29 51 51
Avg.(%) 69.67 72.87 72.35 66.95 60.56 56.12 68.38 46.87 64.35 51.72 50.50
Best 25 38 29 24 20 16 23 14 21 14 15

Table 4. The coverage distribution of the COREUTILS programs under the guidance of different search strategies.

Cov. n = 1 n = 2 n = 4 n = 8 Com
90-100% 9 15 11 8 25
80-90% 10 13 12 12 10
70-80% 19 10 12 17 19
60-70% 9 11 8 10 9
60%- 28 26 31 28 12
A.Cov(%) 66.06 68.88 66.22 65.88 80.67
Best 24 27 25 23 57

Table 5. The coverage distribution of subpath guided-search
with 15 minutes time limit and the result of the combined
cases. The row “Best” is the comparison result of the test
cases generated with individual strategies under 60 minutes
time limit, and the combined test cases of those in 15 minutes.

coverage and saturate, and the combined strategy in 15
minutes can already outperform all the other strategies in
KLEE, each with 60 minute time limit. The comparison
results of the total number of best coverage among the
individual strategies in 1 hour and the combined strategy in
15 minutes each are shown in the row “Best”. We can see that
the combined strategy has the best coverage in almost 80%
of the programs and the average coverage is also significantly
higher.

We also examined the speed to find test cases covering new
statements or branches by tracing the number of terminated
states when each test case is generated and replaying the
cases one by one to see the trend of increasing coverage.
In some bigger programs, length-1 SGS terminates fewer
execution states when generating new test cases than the
longer lengths. However, when the coverage reaches a certain
level, it becomes difficult to find new test cases, while the
longer n’s can still guide path exploration to find new test
cases and ultimately gain higher coverage.

Result 4: SGS yields more bug reports. When KLEE ex-
plored the programs, it also issued some bug reports. Table 6
summarizes this information from the first set of evaluations
in Table 4. There are four kinds of bugs reported [23]:

• Model: KLEE does not support certain program states. For
example, KLEE cannot support symbolic sizes to malloc.

• Exec: Some problems prevented KLEE from executing
the program, such as unknown instructions, a call to an
invalid function pointer, or inlined assembly.

• Ptr: Stores or loads of invalid memory locations.
• External: KLEE failed when invoking external functions

with symbolic arguments.

In Table 6, we only show the programs where different
search strategies yielded bug reports. The Model, Exec, and
External bugs may be resulted from imprecise modeling in
KLEE. However, to illustrate that our strategy was able to
trigger some issues while the other strategies did not, we
included all types of bugs in the table. We observe that
subpath-guided search reported both more bugs and more
types of bugs than the other strategies. Below we list some
test cases that our strategies reported bugs, but the other
strategies did not:

• dir: Both SGS n = 1 and n = 2 generated a Ptr error.
The command line arguments “A // -c” (generated with
n = 1) and “-ccab A /” (generated with n = 2) with a
null directory A caused an out-of-bound pointer error in
the library readdir.c:33 from uclibc.

• chcon: SGS n = 1 reported an External error. When we
use the command line arguments “- –d –ra=g”, KLEE
failed on an external call to fstatat() in the Coreutils’
library fts.c:1394.

• shuf: Both SGS n = 1 and n = 2 generated a Model
error. KLEE reported that the command line arguments
“-i 03-7@” (with n = 1) and “-i3-8 ” (with n = 2) need
to malloc with a symbolic argument, while KLEE does
not support and has to concretize the argument.

• test: SGS n = 2 reported an Exec execution error. KLEE
cannot execute the program with the command line argu-
ments “ -t +01”, which makes KLEE execute the function
syscall() in the POSIX support code fd.c:901 with
symbolic arguments.



XXXXXXXXXXPrograms
Strategy SGS SGS SGS SGS DFS RSS RPS NURS NURS NURS NURS

n = 1 n = 2 n = 4 n = 8 covnew depth icnt md2u
chcon *1,1
chgrp 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1
csplit *1,2 1,1 1,1 1,1 1,1
dir *2,1 *2,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1
head *1,2 1,1 *1,2 *1,2 1,1
ls 1,1 *2,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1
od 1,3 1,4 *1,8 *1,8 1,1 1,6 1,4 1,2 1,3 1,2 1,2
printf *1,1 *1,1 1,1
rm 1,1 1,1 *1,2 1,1 *1,2 1,1 1,1 1,1 1,1 1,1
shuf *2,1 *2,1
split 1,1 *1,2 *1,2 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1
stat *2,1 1,1 *2,1 *2,1 1,1 *2,1 1,1 1,1 1,1 1,1 1,1
test *1,1
unexpand 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1

Table 6. Bug reports from KLEE. The types of bugs are: Model, Exec, Ptr, and External. An empty cell indicates that the
corresponding strategy did not report any errors. Each nonempty cell has two numbers: the first for the number of reported error
types, and the second for the total number of error reports. A cell with a ’*’ indicates that the corresponding search strategy
performed best in bug finding.

The error reports from different search strategies indicate
that our strategy were able to trigger such issues but the other
strategies did not. We can also observe that the guidance
under different subpath lengths may lead to different bug
reports.

Result 5: SGS has acceptable overhead. In this experi-
ment, we observed that each search strategy has quite similar
total number of explored paths as the other strategies on
most programs. This indicates that the SGS strategy does not
incur much time overhead. As for space overhead, KLEE
ran out of memory and crashed for a few programs, mainly
because the constraint solver consumed too much memory.
This happened for almost all the search strategies and may be
attributed to some specific paths of the programs. This means
that our SGS strategy also has similar and acceptable space
overhead compared to the other strategies.

3.3 Mutation Testing Results
To further compare the usefulness of the generated test
cases under different search strategies, we applied mutation
testing [12] to measure the quality of the generated test cases.
In mutation testing, small changes are applied to a program
P to generate a set of “faulty” programs called mutants. A
test suite is then executed on the original program and the
mutants. If the test data can detect the mutated code, we say
the test suite kills a mutant. The ability to find bugs of a test
suite can be measured by the number of mutants it kills.

We used a state-of-the-art mutation testing tool for C
MILU [21] to generate mutants for the programs in CORE-
UTILS. 21 pre-defined mutation operators are applied to
make simple replacements to the programs in COREUTILS,

such as replacing “++” with “–” or “>” with “<”. Then we
replayed the test cases generated under each search strategy
on the original version and the mutants, compared their out-
puts to decide whether a mutant was killed by the test suite.
Some programs in COREUTILS do not produce output or
their output is environment related (such as date and df),
it is difficult to tell whether the different outputs between
original code and a mutant is caused by the test suite we used.
In this case, we picked 40 of the programs for this mutant
testing evaluation.

Table 3 shows the programs we chose, and for each
program, its corresponding number of mutants. Because the
size of each program is different, MILU generated different
number of mutants for each program, ranging between 100
to around 6K. The total number of the mutants is 57, 790.
Unlike what we did in the statement coverage evaluation,
test cases were generated for every terminated state. This is
because the distribution of the small changes in the program
may need some specific paths to show their effects, not only
those test cases for paths that hit new instructions or branches
that lead to different outputs in the original code and the
mutants. Because the evaluation results from Section 3.2
show that the combined subpath-guided search strategy is the
most effective in terms of statement coverage, we also added
the combined strategy to our mutant testing evaluation.

The results are shown in Table 7. Since the number
of mutants for the programs varies widely, we use three
dimensions to present the results. The column “Total Kill”
denotes the total number of mutants killed by the test suite
generated under the corresponding search strategy. Because
some programs have a large number of mutants killed while



Strategy Ave. Kill Rate Total Kill Best
n = 1 26.00% 14529 14
n = 2 27.65% 16072 8
n = 4 26.04% 14930 9
n = 8 26.96% 13951 8
Combined SGS 32.17% 19719 24
RSS 23.03% 12267 4
DFS 18.63% 9632 2
RPS 25.16% 13349 6
covnew 19.58% 10211 2
depth 21.80% 11105 3
icnt 19.23% 9987 2
md2u 18.44% 9208 2

Table 7. Mutation testing results.

some others only have a few, the total number of killed
mutants may skew the contribution from the programs with
fewer killed mutants. Thus, we calculate the mutant kill rate
for each program and show the average kill rate in column
“Ave.Kill Rate”. Like what we did in the statement coverage
evaluation, we count, for each strategy, its number of the most
killed mutants and show the result in column “Best”.

Result 6: SGS kills more mutants. From the result, we can
see that the subpath-guided search strategies perform better
than the other strategies in KLEE. The combined subpath-
guided search kills the most mutants and has the highest
average kill rate. It should be noted that in this evaluation
that the combined search strategy has the best killed number
in about 60% of the programs we analyzed, which is signifi-
cantly lower than the corresponding result from the statement
coverage evaluation (around 80%). One possible explana-
tion for this result is that we generated test cases for every
terminated execution state, which took more time than only
generating test cases covering new statements or branches.
In the combined search, each strategy only ran for 15 min-
utes, and sometimes that is not long enough to explore more
parts of the program. Nonetheless, the SGS strategies and its
combined version still outperforms all the other strategies.

3.4 Discussions
Our approach provides a general, unified framework to sys-
tematically guide symbolic execution using subpath program
spectra. We can use a specific n for different purposes. If we
want to cover more parts of the program in a short amount
of time, a small n (such as 1) can be the desirable choice
as it ignores much of the contextual information and can
explore program paths with less conditional branches at the
very beginning. However, the limited contextual information
cannot provide powerful guidance when the coverage reaches
a certain level, while some specific parts of the program may
need certain loop or iteration times to enter. In this case, a
larger n will be a more suitable choice as we can explore

the program with more program specific information and
thus cover the program more thoroughly. On the other hand,
longer n’s may also be prone to guide symbolic execution
to redundantly explore some paths and reduce the efficiency
and effectiveness of path exploration. The combined strategy
using different length n appears to be striking a good balance
between efficiency and effectiveness.

4. Related Work
We have proposed a unified technique to guide symbolic path
exploration to tackle the problem of path explosion, which
is a significant challenge for symbolic execution because
systematically executing all feasible paths in large programs
is costly. This section surveys closely related work on this
topic. Many techniques have been proposed in the literature
to handle the problem from different aspects: path guidance,
path pruning, and parallel execution.

Path Guidance Techniques. Different search strategies
have been proposed and used in symbolic or concolic test-
ing. The EXE tool by Cadar et al. [8] employs a Best-First
Search strategy, which checks all execution states and picks
the best one according to some heuristics. Hybrid Concolic
Testing [24] is a technique proposed to interleave random
testing with concolic execution to obtain a deep and wide
exploration. The control-flow guided search strategy [6] con-
structs a weighted control flow graph (CFG), guiding the
exploration to the nearest currently uncovered parts based on
the distance in the CFG when the concolic testing needs to
choose branches to negate. The fitness-guided search strat-
egy [32] calculates fitness values from explored paths to
target predicates and fitness gains for the branches to be
flipped, then selects proper paths and branches to cover the
target predicates. SAGE [18] proposes a new search algo-
rithm, generational search, to address the practical limitations
of path explosion and imperfect symbolic execution. Similar
to Best-First Search, generational search tests all children of
each expanded execution, scores their entire runs and picks
one with the top score to run and check. The search strategy
in Pex [30] shares some similarity to ours. It maintains an
explored execution tree and picks an outgoing branch every
time. However, our strategy is more general and flexible
as it provides a spectrum of techniques to guide path ex-
ploration. We make decisions guided by more information
from the explored paths, which provides better guidance. Our
combined strategy also offers a good balance of cost and
effectiveness, and can be fruitfully incorporated in existing
(directed) symbolic execution engines.

Path Pruning Techniques. There also exist techniques that
address the path explosion problem by path pruning. The
RWset analysis technique [5] tracks the memory locations
read and written by the program to determine whether a
path can explore new program behavior. Those execution
states that are deemed to produce the same effects as some



already explored paths will be pruned to reduce the number
of explored paths. The tool eXpress [29] introduces dynamic
symbolic execution for regression test generation and prunes
paths that do not expose behavioral differences while ex-
ploring new program versions. The SMART [16] technique
performs concolic testing compositionally by adapting in-
terprocedural static analysis. While these path pruning tech-
niques focus on avoiding redundant path explorations, our
technique focuses on guiding symbolic execution to explore
more profitable paths. These are complementary approaches
to tackle the path explosion problem and may be fruitfully
combined.

Parallel Symbolic Execution. Finally, there are also com-
plementary parallel symbolic execution techniques [28] pro-
posed to mitigate the path explosion problem in symbolic
execution. They use simple static partition techniques to help
divide the symbolic execution tree and then in parallel ex-
plore the partitions utilizing multi-core machines available
from cloud or grid computing environments.

5. Conclusion and Future Work
In this paper, we have introduced a general, unified frame-
work to intelligently guide symbolic execution to improve
test coverage and error detection. Our key insight is to use
length-n subpath program spectra to systematically steer path
exploration to less explored parts of a program. We have
implemented our framework in a state-of-the-art symbolic
execution engine KLEE. Results on a large number of small
to medium size real-world programs show that our unified
search strategy can generate test cases with higher coverage
in less time compared to common traditional strategies. We
also show that the generated test cases can help locate more
bugs. Finally, we have proposed a natural combination of the
specialized strategies under different choices of n and show
that it offers the best trade-offs of cost and effectiveness. We
believe that our general framework can be incorporated in
existing symbolic execution engines besides KLEE (such as
Pex and JPF) and have potential applications in other soft-
ware testing and analysis problems that require path-based
analysis.

There are several interesting avenues for future work. First,
we would like to explore how to effectively interleave our
strategy with other strategies to more intelligently break ties
among states with same subpath frequencies. Second, we are
also interested in investigating how to dynamically adjust n,
for example, by tracking certain program properties. Once
the current n cannot provide worthwhile profit for its cost
(determined by the properties we track), we may adjust n.
Other promising directions include synergistic combinations
with path pruning or parallel symbolic execution. Beyond
symbolic execution, it would be interesting to apply the same
concept to other testing and analysis problems, especially
those that rely on path analysis.

Acknowledgments
We thank the anonymous reviewers for constructive feedback
on earlier drafts of this paper. This research was supported
in part by the National Natural Science Foundation of China
(No. 91318301, 61170066, and 61021062), the National 863
High-Tech Program of China (No. 2012AA011205), and
United States NSF Grants 0917392, 1117603 and 1319187.
The information presented here does not necessarily reflect
the position or the policy of the Government and no official
endorsement should be inferred.

References
[1] S. Anand, C. S. Păsăreanu, and W. Visser. JPF–SE: A sym-

bolic execution extension to Java PathFinder. In Tools and
Algorithms for the Construction and Analysis of Systems, pages
134–138. Springer, 2007.

[2] V. Bala, E. Duesterwald, and S. Banerjia. Transparent dynamic
optimization: The design and implementation of Dynamo.
Technical report, Technical Report HPL-1999-78, Hewlett-
Packard Laboratories, 1999.

[3] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: a transpar-
ent dynamic optimization system. In ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation,
pages 1–12. ACM, 2000.

[4] T. Ball and J. Larus. Efficient path profiling. In ACM/IEEE
International Symposium on Microarchitecture, pages 46–57.
IEEE Computer Society, 1996.

[5] P. Boonstoppel, C. Cadar, and D. Engler. RWset: Attacking
path explosion in constraint-based test generation. In Inter-
national Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems, pages 351–366. Springer,
2008.

[6] J. Burnim and K. Sen. Heuristics for scalable dynamic test
generation. In IEEE/ACM International Conference on Auto-
mated Software Engineering, pages 443–446. IEEE Computer
Society, 2008.

[7] C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted
and automatic generation of high-coverage tests for complex
systems programs. In USENIX Symposium on Operating
Systems Design and Implementation, pages 209–224, 2008.

[8] C. Cadar, V. Ganesh, P. Pawlowski, D. Dill, and D. Engler.
EXE: automatically generating inputs of death. ACM Transac-
tions on Information and System Security (TISSEC), 12(2):10,
2008.

[9] C. Cadar, P. Godefroid, S. Khurshid, C. Pasareanu, K. Sen,
N. Tillmann, and W. Visser. Symbolic execution for software
testing in practice: preliminary assessment. In International
Conference on Software Engineering, pages 1066–1071. IEEE,
2011.

[10] L. A. Clarke. A system to generate test data and symbolically
execute programs. IEEE Transactions on Software Engineer-
ing, 2(3):215–222, 1976.

[11] Coreutils - GNU core utilities. http://www.gnu.org/

software/coreutils/.

http://www.gnu.org/software/coreutils/
http://www.gnu.org/software/coreutils/


[12] R. DeMillo, R. Lipton, and F. Sayward. Hints on test data
selection: Help for the practicing programmer. Computer,
11(4):34–41, 1978.

[13] E. Duesterwald and V. Bala. Software profiling for hot
path prediction: Less is more. In International Conference
on Architectural Support for Programming Languages and
Operating Systems, pages 202–211. ACM, 2000.

[14] J. W. Duran and S. C. Ntafos. An evaluation of random testing.
IEEE Transactions on Software Engineering, 10(4):438–444,
1984.

[15] R. Ferguson and B. Korel. The chaining approach for soft-
ware test data generation. ACM Transactions on Software
Engineering and Methodology (TOSEM), 5(1):63–86, 1996.

[16] P. Godefroid. Compositional dynamic test generation. In ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 47–54. ACM, 2007.

[17] P. Godefroid, N. Klarlund, and K. Sen. DART: directed
automated random testing. In ACM SIGPLAN Conference
on Programming Language Design and Implementation, pages
213–223. ACM, 2005.

[18] P. Godefroid, M. Levin, D. Molnar, et al. Automated whitebox
fuzz testing. In Network and Distributed System Security
Symposium. The Internet Society, 2008.

[19] D. Hamlet and R. Taylor. Partition testing does not inspire
confidence [program testing]. IEEE Transactions on Software
Engineering, 16(12):1402–1411, 1990.

[20] M. Harrold, G. Rothermel, K. Sayre, R. Wu, and L. Yi. An
empirical investigation of the relationship between spectra
differences and regression faults. Software Testing Verification
and Reliability, 10(3):171–194, 2000.

[21] Y. Jia and M. Harman. Milu: A customizable, runtime-
optimized higher order mutation testing tool for the full C
language. In Testing: Academia and Industry Conference -
Practice And Research Techniques, pages 94–98. IEEE, 2008.

[22] J. King. Symbolic execution and program testing. Communi-
cations of the ACM, 19(7):385–394, 1976.

[23] The KLEE symbolic virtual machine. http://klee.llvm.

org/.

[24] R. Majumdar and K. Sen. Hybrid concolic testing. In
International Conference on Software Engineering, pages 416–
426. IEEE, 2007.

[25] D. Marinov, A. Andoni, D. Daniliuc, S. Khurshid, and M. Ri-
nard. An evaluation of exhaustive testing for data structures.
Technical report, Technical Report MIT-LCS-TR-921, MIT
CSAIL, Cambridge, MA, 2003.

[26] C. S. Păsăreanu and W. Visser. Verification of Java programs
using symbolic execution and invariant generation. In Model
Checking Software, pages 164–181. Springer, 2004.

[27] T. Reps, T. Ball, M. Das, and J. Larus. The use of program
profiling for software maintenance with applications to the
Year 2000 problem. In Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT International
Symposium on Foundations of Software Engineering, pages
432–449, 1997.

[28] M. Staats and C. Păsăreanu. Parallel symbolic execution
for structural test generation. In International Symposium
on Software Testing and Analysis, pages 183–194. ACM, 2010.

[29] K. Taneja, T. Xie, N. Tillmann, and J. de Halleux. eXpress:
guided path exploration for efficient regression test generation.
In International Symposium on Software Testing and Analysis,
pages 1–11. ACM, 2011.

[30] N. Tillmann and J. De Halleux. Pex–white box test generation
for .NET. Tests and Proofs, pages 134–153, 2008.

[31] W. Visser, C. S. Păsăreanu, and R. Pelánek. Test input genera-
tion for Java containers using state matching. In International
Symposium on Software Testing and Analysis, pages 37–48.
ACM, 2006.

[32] T. Xie, N. Tillmann, J. de Halleux, and W. Schulte. Fitness-
guided path exploration in dynamic symbolic execution. In
IEEE/IFIP International Conference on Dependable Systems
and Networks, pages 359–368. IEEE, 2009.

[33] X. Yang, Y. Chen, E. Eide, and J. Regehr. Finding and under-
standing bugs in C compilers. In ACM SIGPLAN Conference
on Programming Language Design and Implementation, pages
283–294. ACM, 2012.

http://klee.llvm.org/
http://klee.llvm.org/

	Introduction
	Subpath-Guided Path Exploration
	Symbolic Execution Background
	The Length-n Subpath Program Spectra
	Subpath-Guided Search
	Discussions

	Evaluation and Analysis
	Evaluation Design and Setup
	Test Coverage Results
	Mutation Testing Results
	Discussions

	Related Work
	Conclusion and Future Work

